Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 2 entries in the Bibliography.


Showing entries from 1 through 2


2021

Equatorial Ionization Anomaly Variations During Geomagnetic Storms

The equatorial ionization anomaly (EIA) was discovered in the 1940s. Since then, the research on ionospheric storm effects at the equatorial and low latitudes has become one of the hottest topics in the ionospheric community. During the past 2 decades, large amounts of ionospheric and thermospheric data from the ground-based and satellite-borne observations and also from the novel capability of three-dimensional numerical models stimulated the ionospheric weather studies. Recent scientific progresses on the EIA response to geomagnetic storms are briefly described here, together with some suggestions for the future research directions of the EIA storm effects.

Luan, Xiaoli;

Published by:       Published on:

YEAR: 2021     DOI: 10.1002/9781119815617.ch13

Geomagnetic storms; Equatorial ionization anomaly; equatorial ionospheric response; equatorial regions; low latitude regions; physical mechanisms

2013

Physical mechanisms of the ionospheric storms at equatorial and higher latitudes during the recovery phase of geomagnetic storms

The paper studies the physical mechanisms of the ionospheric storms at equatorial and higher latitudes, which are generally opposite both during the main phase (MP) and recovery phase (RP) of geomagnetic storms. The mechanisms are based on the natural tendency of physical systems to occupy minimum energy state which is most stable. The paper first illustrates the recent developments in the understanding of the mechanisms during daytime MPs when generally negative ionospheric storms (in Nmax and TEC) develop at equatorial latitudes and positive storms occur at higher latitudes, including why the storms are severe only in some cases. The paper then investigates the relative importance of the physical mechanisms of the positive ionospheric storms observed at equatorial latitudes (within \textpm15\textdegree) during daytime RPs when negative storms occur at higher latitudes using CHAMP Ne and GPS-TEC data and Sheffield University Plasmasphere Ionosphere Model. The results indicate that the mechanical effect of the storm-time equatorward neutral winds that causes plasma convergence at equatorial F region could be a major source for the positive storms, with the downwelling effect of the winds and zero or westward electric field, if present, acting as minor sources.

Balan, N.; Otsuka, Y.; Nishioka, M.; Liu, J; Bailey, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2013

YEAR: 2013     DOI: 10.1002/jgra.50275

Geomagnetic storms; Ionospheric storms; physical mechanisms



  1